Note for Intro to Machine Learning
Published at 2023-11-12
Last update over 365 days ago
Licensed under CC BY-NC-SA 4.0
python
machine-learning
decision-tree
random-forest
mean-absolute-error
note
This is a note for the course on Kaggle: Intro to Machine Learning.
import pandas as pd
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
# Path of the file to read
iowa_file_path = '../input/home-data-for-ml-course/train.csv'
home_data = pd.read_csv(iowa_file_path)
# Create target object and call it y
y = home_data.SalePrice
# Create X
features = ['LotArea', 'YearBuilt', '1stFlrSF', '2ndFlrSF', 'FullBath', 'BedroomAbvGr', 'TotRmsAbvGrd']
X = home_data[features]
# Split into validation and training data
train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1)
# Specify Model
iowa_model = DecisionTreeRegressor(random_state=1)
# Fit Model
iowa_model.fit(train_X, train_y)
# Make validation predictions and calculate mean absolute error
val_predictions = iowa_model.predict(val_X)
val_mae = mean_absolute_error(val_predictions, val_y)
print("Validation MAE when not specifying max_leaf_nodes: {:,.0f}".format(val_mae))
# Using best value for max_leaf_nodes
iowa_model = DecisionTreeRegressor(max_leaf_nodes=100, random_state=1)
iowa_model.fit(train_X, train_y)
val_predictions = iowa_model.predict(val_X)
val_mae = mean_absolute_error(val_predictions, val_y)
print("Validation MAE for best value of max_leaf_nodes: {:,.0f}".format(val_mae))```
from sklearn.ensemble import RandomForestRegressor
# Define the model. Set random_state to 1
rf_model = RandomForestRegressor(random_state=1)
# fit your model
rf_model.fit(train_X, train_y)
# Calculate the mean absolute error of your Random Forest model on the validation data
rf_val_mae = mean_absolute_error(val_y, rf_model.predict(val_X))
print("Validation MAE for Random Forest Model: {}".format(rf_val_mae))